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Let D be a bounded symmetric domain of tube type and 7 be the Shilov bound-
ary of D. Denote by H2(D) and A2(D) the Hardy and Bergman spaces, respectively,
of holomorphic functions on D; and let B(H2(D)) and B(A2(D)) denote the closed
unit balls in these spaces. For an integer l�0 we define the notion Rlf of the lth
radial derivative of a holomorphic function f on D, and we prove the following
results: Let 0<\<1. Denote by W the class of holomorphic functions f on D for
which R lf # B(H2(D)) and set X=C(\7). Then we show that the linear and
Gelfand N-widths of W in X coincide, and we compute the exact value. We do the
same for the case in which W is the class of holomorphic functions f for which
Rlf # B(A2(D)), and X=C(\7). Next, let X=L p(\7) (respectively, L p(\D)) for
1� p��, and let W be a class of holomorphic functions f on D for which
Rlf # B(Hp(D)) (respectively, B(Ap(D))). We show that the Kolmogorov, linear,
Gelfand, and Bernstein N-widths all coincide, we calculate the exact value, and we
identify optimal subspaces or optimal linear operators. These results extend work
of Yu. A. Farkov (1993, J. Approx. Theory 75, 183�197) and K. Yu. Osipenko
(1995, J. Approx. Theory 82, 135�155), and initiate the study of N-widths of spaces
of holomorphic functions on bounded symmetric domains. � 2000 Academic Press
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1. INTRODUCTION

Suppose that X is a normed linear space and W is a subset of X. The
concept of an N-width of W in X was introduced as a means of measuring
the degree to which W can be approximated by N-dimensional subspaces
of X. The following four kinds of N-widths have been studied extensively,
both from the abstract point of view as well as for specific choices of X and
W. The Kolmogorov N-width is defined by the formula

dN(W, X )=inf
XN

sup
v # W

inf
w # XN

&v&w&

in which the infimum is taken over all N-dimensional subspaces XN of X.
The linear N-width is given by

$N(W, X )=inf
PN

sup
v # W

&v&PN v&, (1.1)

the infimum being taken over all bounded linear operators PN on X of
rank at most N. The Bernstein N-width is defined as

bN(W, X )= sup
XN+1

sup[t # R : tB(XN+1)�W],

where the first supremum is taken with respect to all (N+1)-dimensional
subspaces XN+1 of X, and B(XN+1) denotes the closed unit ball in XN+1 .
Finally, the Gelfand N-width is given by

d N(W, X )=inf
XN

sup
v # W & XN

&v& (1.2)

with the infimum taken over all subspaces XN of X of codimension N. For
a comprehensive treatment of these N-widths we refer to the book [8] by
Pinkus.

In this paper we begin the study of these N-widths for some spaces of
holomorphic functions defined on bounded symmetric domains. Our
interest in this subject was generated by the papers [6] of Osipenko and
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[3] of Farkov, and our results can be viewed as extending some of the
results in these papers to the setting of bounded symmetric domains of tube
type. We refer to the book [2] by Faraut and Kora� nyi for the structure of
such domains.

We briefly outline the results in this paper. Let D be an irreducible
bounded symmetric domain of tube type. We realize D in terms of its
associated simple Euclidean Jordan algebra V as the open unit ball in the
complexification V C, the metric on V C being given by the spectral norm
[2, p. 198]. Let 7 be the Shilov boundary of D. For 0<\<1 set 7\=
\7=[\z # V C : z # 7] and D\=\D=[\z # V C : z # D]. For a holomorphic
function f on D we define its radial derivative Rlf of order l by (2.11) below.
Now we can describe our results.

(1) Let H2(D) be the Hardy space and A2(D) be the Bergman space
of D [2, Chaps. X and XIII], and denote by B(H2(D)) and B(A2(D)) the
corresponding closed unit balls. Let X be the Banach space C(7\) of
continuous functions on 7\ , and let W be either the class H2, l (D) of all
holomorphic functions f on D for which Rlf # B(H2(D)), or the class
A2, l (D) for which Rlf # B(A2(D)). We prove that the linear and Gelfand
N-widths of W in X coincide, and we calculate the exact value.

(2) Let p�1 and denote by Hp(D) and Ap(D) the Hardy and
Bergman spaces of D, respectively. Let B(Hp(D)) and B(Ap(D)) denote the
corresponding closed init balls. If X=L p(7\) and W=Hp, l (D) is the
Hardy�Sobolev space of holomorphic functions f on D for which Rlf #
B(Hp(D)), then we prove that all four N-widths of W in X coincide and we
compute the exact value. We do the same for the case in which X=L p(D\)
and W=Ap, l (D) is the Bergman�Sobolev space of holomorphic functions f
on D for which Rlf # B(Ap(D)).

This paper is organized as follows. In Section 2 we give the classification
of bounded symmetric domains of tube type, provide some prerequisite
analysis on these domains, and define the radial derivatives. In Section 3
we derive exact values of the N-widths for H2, l (D) and A2, l (D) in C(7\).
In Sections 4�6 we develop some preliminary material on the Sobolev
spaces on D and obtain upper bounds for linear N-widths and lower
bounds for Bernstein N-widths. The results in these sections prepare the
way for the main result, Theorem 7.1 in Section 7, in which we present the
exact formulas for all four types of N-widths of Hp, l (D) in L p(7\) and
Ap, l (D) in L p(D\). Additionally, we identify the corresponding optimal
subspaces or optimal operators.

We remark that our work in this paper treats N-widths for bounded
symmetric domains of tube type. N-widths for the non-tube type domains
will be studied in [1].
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2. PRELIMINARIES ON BOUNDED SYMMETRIC DOMAINS

For the reader less familiar with the theory of bounded symmetric
domains, we begin with some general background. In brief, a bounded
symmetric domain is an open domain in a finite-dimensional complex
vector space having a transitive group of biholomorphic transformations
with respect to which the domain is a Riemannian symmetric space.
A bounded symmetric domain is a product of irreducible such domains,
which leads one to study the irreducible domains. These are of two types.
Those irreducible domains which can be realized, in analogy to the
ordinary upper half-plane, as a tube domain over a cone are said to be
of tube type. Otherwise an domain is said to be not of tube type. The
irreducible bounded symmetric domains are classified completely. Those of
tube type fall into four so-called classical families of domains, together with
a single exceptional domain. We list the four classical families, the first,
three of which are said to be matrix domains, and the fourth of which is
known as the Lie spheres. For the matrix domains we use the notation
a<b to mean that b&a is positive-definite, and we denote by Ir the r_r
identity matrix.

(1) The domain of all complex r_r matrices z such that zz*<Ir .

(2) The domain of all complex symmetric r_r matrices z such that
zz*<Ir .

(3) The domain of all complex skew-symmetric 2r_2r matrices z
such that zz*<I2r .

(4) The domain consisting of all column vectors z # Cn, n>2, such
that

1&z*z>- (z*z)2&|ztz| 2.

The exceptional domain has complex dimension 27, and can be realized in
terms of 3_3 matrices over the Cayley algebra.

All of these domains can be studied simultaneously via the use of Jordan
algebras, and it is such a realization of a bounded symmetric domain of
tube type that we use in our work on N-widths. Thus, let V be a simple
Euclidean Jordan algebra [2, Chap. III], denote by n its dimension as a
real vector space, denote its rank by r, and let = be the identity element
in V. Endow the complexification V C=V+iV with the spectral norm
[2, p. 198], and set

D=[w # V C : |w|<1], (2.1)
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where |w| is the spectral norm of w. The domain D is called the generalized
unit disk in V C, and is an irreducible bounded symmetric domain of tube
type. Moreover, for any irreducible bounded symmetric domain of tube
type there exists a simple Euclidean Jordan algebra V such that the domain
is biholomorphically equivalent to (2.1).

In the remainder of this paper we let D be an irreducible bounded
symmetric domain of tube type realized in terms of the Jordan algebra V
as the domain (2.1).

Denote by 7 the Shilov boundary of D, consisting of all invertible
elements z # V C such that z&1=z� [2, p. 190]. Set G(7)=[g # GL(V C) :
g7=7], and let U denote the connected component of the identity
element in G(7). The group U acts transitively on 7. We denote by _ the
normalized (unit volume) U-invariant measure on 7.

Let P(V C) denote the space of all polynomials on V C, and Pk(V C) the
subspace of polynomials homogeneous of degree k. By a partition we mean
an r-tuple m=(m1 , ..., mr) of integers such that m1� } } } �mr�0. We refer
to the number |m|=m1+ } } } +mr as the length of the partition m. The
natural representation { of GL(V C) on P(V C) is defined by

({(g) p)(x)= p(g&1x), (2.2)

for all x # V C, where g # GL(V C) and p # P(V C). Given a partition m,
let

2m(x)=21(x)m1&m2 22(x)m2&m3 } } } 2r&1(x)mr&1&mr 2r(x)mr,

where 2j (x) is the j th principal minor of x # 0 [2, p. 114]. The function 2m

is called the power function of m.
Let Pm(V C) denote the subspace of P(V C) generated by the polynomials

{(g) 2m , g # GL(V C). By [2, Theorem XI.2.4], P(V C) decomposes as the
orthogonal direct sum

P(V C)=�
m

Pm(V C), (2.3)

where the summation is over all partitions m. The polynomials in Pm(V C)
are homogeneous of degree |m|, so Pm(V C)�P |m|(V C) and (2.3) is
equivalent to the decomposition

Pk(V C)= �
|m| =k

Pm(V C), (2.4)
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where the sum is over all partitions of length k. Let dm denote the
dimension of Pm(V C). Then, by (2.4) and a well-known formula for the
dimension of Pk(V C),

:
|m| =k

dm=dim Pk(V C)=\n+k&1
k + . (2.5)

For any positive integer + set

N+= :
+&1

k=0

dim Pk(V C)= :
+&1

k=0
\n+k&1

k + . (2.6)

By a standard property of the binomial coefficients,

N+=\n++&1
n + . (2.7)

The number N+ is the dimension of the space of all polynomials in P(V C)
homogeneous of degree strictly less than +.

It is important to note the group theoretic significance of the decomposi-
tion (2.3). Associated to the Jordan algebra V is a symmetric cone 0,
defined as the connected component of = in the set of invertible elements of
V [2, Chap. III]. Let G(0)=[g # GL(V ) : g0�0], the automorphism
group of 0, and denote by G the connected component of the identity in
G(0). Then G acts transitively on 0, the isotropy subgroup K=
[k # G : k===] of = is a maximal compact subgroup of G, and 0&G�K.
Thus 0 is a symmetric space; hence, the term ``symmetric cone.''

Now consider P(V C) as a G-module under the action (2.2) defined
by {. Each of the subspaces Pm(V C) is irreducible, distinct values of m
correspond to inequivalent representations, and (2.3) is the multiplicity-free
decomposition of P(V C) as a G-module into its irreducible constituents
[2, Chap. XI]. In particular, in each subspace Pm(V C) there is a non-zero
K-invariant polynomial 8m , unique up to constant multiples, which when
normalized so that 8m(=)=1 is called the spherical polynomial of order m.
Note that 2m # Pm(V C) and

8m(z)=|
K

2m(kz) dk

for all z # V C, where dk is normalized Haar measure on K.
Equip Pm(V C) with the inner product

( f1 | f2) 7=|
7

f1(z) f2(z) d_(z) (2.8)
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for f1 , f2 # Pm(V C). Then Pm(V C) becomes a reproducing kernel Hilbert
space, and we denote the reproducing kernel by Hm(z, w) for z, w # V C. By
[2, Proposition XII.2.4], Hm(z, =)=dm 8m (z) for all z # V C, and hence

Hm(=, =)=dm 8m(=)=dm .

Let [.m
1 , ..., .m

d m
] be a basis for Pm (V C), orthonormal with respect to the

inner product (2.8.). By the general theory of reproducing kernel spaces, we
have

Hm(z, w)= :
dm

j=1

.m
j (z) .m

j (w) (2.9)

for all z, w # D.
We close this section with the definition of the radial derivatives. Let f

be a holomorphic function on the domain D, and denote its decomposition
into homogeneous parts

f (z)= :
�

k=0

Fk(z), (2.10)

for z # D, where Fk is a homogeneous polynomial of degree k. We define
the radial derivative of f of order l by

Rlf (z)= :
�

k=l

k !
(k&l )!

Fk(z). (2.11)

Note that for each positive integer l, R l is an invariant differential operator
on 0. That is, Rl commutes with the natural representation (2.2) of
GL(V C) on P(V C).

3. N-WIDTHS OF H2, l (D) AND A2, l (D) IN C(7\)

The Hardy space H2(D) is the space of holomorphic functions f on D
such that

& f &2
H2(D)= sup

0<\<1
|

7
| f (\z)|2 d_(z)<�.

By [2, p. 270], if f # H2(D) then the function f\ , defined by f\(z)= f (\z),
has a limit as \ � 1&. This limit is also denoted by f, and

& f &H2(D)=& f &7 , (3.1)
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where & f &7 is the norm derived from (2.8). By means of (3.1), we identify
the Hilbert spaces H2(D) and L2(7).

Fix a positive integer l, and denote by H l
2(D) the space of holomorphic

functions f : D � C that satisfy the following two properties:

(i) In the homogeneous decomposition (2.10) of f, Fk(z)#0 for all
k=0, 1, ..., l&1; and

(ii) Rlf # H2(D).

For l=0 we set H0
2(D)=H2(D). Then the space H l

2(D) is a Hilbert space
with inner product

( f, g) l=(Rlf, Rlg)H2(D) . (3.2)

Let

B0= .
|m|�l

[.m
1 , ..., .m

d m
]

denote the basis of H l
2(D) in which [.m

1 , ..., .m
d m

] is the basis for Pm(V C)
that appears in (2.9). Write the Fourier expansions of f, g # H l

2(D) with
respect to the basis B0 as

f (z)= :
|m| �l

:
d m

j=1

cj, m .m
j (z)

and

g(z)= :
|m| �l

:
d m

j=1

dj, m.m
j (z).

Because the basis B0 is complete and orthonormal for the subspace of
H2(D) (or L2(7)) spanned by Pm(V C) with |m|�l, by (2.11) and (3.2),

( f, g) l= :
|m| �l \

|m|!
( |m|&l)!+

2

:
dm

j=1

cj, m dj, m .

Therefore the set of functions

{( |m|&l )!
|m|!

.m
j (z) : |m|�l= (3.3)

forms a complete orthonormal basis for H l
2(D).
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For 0<\<1 we set 7\=\7=[\z: z # 7], and we denote by _\

normalized U-invariant measure on 7\ . Then the functions (3.3) are also
orthogonal in L2(7\ , _\), and

&.m
j &2

L2(7\ , _\)=|
7\

|.m
j (�)|2 d_\(�)=|

7
|.m

j (\z)|2 d_(z)=\2 |m|, (3.4)

where the last equality follows from the homogeneity and orthonormality
of .m

j in L2(7).
An important consequence of (3.4) is the monotonicity of these norms.

That is, if m and m$ are two partitions such that |m|�|m$| then

&.m
j &L2(7\ , _\)�&.m$

j $ &L2(7\ , _\) (3.5)

for all j and j $.
Finally we define the class H2, l (D) of functions whose Gelfand and

linear N-widths in C(7\) we will determine. Let l�1. A holomorphic func-
tion f on D will lie in H2, l (D) if Rlf # B(H2(D)), where B(H2(D)) is the
unit ball in the Hilbert space H2(D). Note that H l

2(D) is orthogonal to

�
l&1

k=0

Pk(V C)

in the Hilbert space L2(7\ , _\). Hence, we can write

H2, l (D)=B(H l
2(D))+\�

l&1

k=0

Pk(V C)+
in L2(7\ , _\), or in the Banach space C(7\), where B(H l

2(D)) is the unit
ball in the Hilbert space H l

2(D). When l=0, we set H2, l (D)=B(H2(D)).
We are now in a position to apply a result due to Osipenko [6,

Theorem 2], which can be described as follows. Let H be a reproducing
kernel Hilbert space of continuous functions on a set 0 and E a compact
subset of 0 with a probability measure ! such that the restriction map
f [ f |E is a bounded linear operator from H to the Banach space C(E ).
View a function in H as an element of L2(E, !), and suppose that we are
given an orthonormal basis [.1 , .2 , ...] of H that is also an orthogonal set
in L2(E, !) ordered so that

&.1&E�&.2&E� } } } , (3.6)

where & }&E denotes the norm in L2(E, !). Finally, suppose we are also
given an r-dimensional subspace Xr of C(E ) with the property that Xr is
orthogonal to H in the inner product on L2(E, !). Let A=B(H )+Xr

where B(H ) is the unit ball in H viewed as a subset of C(E ). Then
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Osipenko's theorem provides the following estimates on the linear and
Gelfand (N+r)-widths of A in C(E):

� :
j>N

&.j&2
E �$N+r(A, C(E ))=d N+r(A, C(E ))�sup

z # E � :
j>N

|. j (z)|2.

(3.7)

The preceding calculations show that the hypotheses of Osipenko's
theorem hold with H=H l

2(D), E=7\ , and A=H2, l (D) (cf. (3.5) and
(3.6)). Then the estimate in (3.7) becomes

\ :
�

k=+ \
(k&l )!

k! +
2

\n+k&1
n&1 + \2k+

1�2

�d N+(H2, l (D), C(7\))

=$N+
(H2, l (D), C(7\))

� sup
z # 7\

\ :
|m|�+ \

( |m|&l )!
|m|! +

2

:
dm

j=1

|.m
j (z)|2+

1�2

, (3.8)

where 0<\<1, +�l�0, N+ is given by (2.7), and $N+
and d N+ denote the

linear and Gelfand N+ -widths, (1.1) and (1.2), respectively.

3.1. Theorem. Let 0<\<1 and +�l�0 as above. Then the Gelfand
and linear N+ -widths d N+(H2, l (D), C(7\)) and $N+

(H2, l (D), C(7\)) both are
equal to

\+ \ 1
(n&1)!

:
�

k=0

((++k&l )!)2 (n++&1+k)!
((++k)!)3 \2k+

1�2

. (3.9)

Proof. It is enough to show that the upper bound in (3.8) coincides
with the lower bound, since the expression in (3.9) is just a simplified
version of the lower bound in (3.8).

By (2.9)

:
dm

j=1

|.m
j (z)| 2=Hm(z, z). (3.10)

By [2, Theorem XII.1.1; 2, Proposition XII.2.4(iii)],

|Hm(z, z)|�\2 |m| dm (3.11)
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for z # 7\ . By (3.10) and (3.11), we find that the upper bound in (3.8) is
bounded above by

\ :
|m| �+ \

( |m|&l )!
|m|! +

2

\2 |m| dm+
1�2

=\ :
�

k=+ \
(k&l )!

k ! +
2

\2k :
|m| =k

dm+
1�2

=\ :
�

k=+ \
(k&l )!

k ! +
2

\2k \n+k&1
k ++

1�2

,

(3.12)

where the last equality follows from (2.5). Since (3.12) and the lower bound
in (3.8) are identical, the proof is complete.

Now we turn to the case of the Bergman space A2(D), which is the set
of all holomorphic functions f on D satisfying the condition

& f &2
A2(D)=|

D
| f (z)|2 d&(z)<�,

where & is the normalized Lebesgue measure on D. In analogy to the
preceding case, for l�1 we let A l

2(D) be the space of holomorphic func-
tions f on D for which Fk(z) vanishes for 0�k�l&1 and R lf # A2(D); and
we denote by A2, l (D) the class of holomorphic functions f on D for which
Rlf # B(A2(D)). For l=0 we set A0

2(D)=A2(D) and A2, 0(D)=B(A2(D)).
Also, for a complex number s and a partition m we use the notation
[2, p. 129]

(s)m= `
r

j=1

(s& 1
2 ( j&1) d )mj

for the generalized shifted factorial for the Jordan algebra V, where (s) j=
s(s+1) } } } (s+ j&1) is the usual shifted factorial and d=2(n&r)�r(r&1)
[2, p. 71].

Let 0<\<1, and l be a nonnegative integer. In order to apply the
estimate (3.7) in the proof of the theorem that follows, we reenumerate the
set of all partitions m satisfying |m|�l as [m( j): j=0, 1, ...] in such a way
that,

{\( |m( j)|&l )!
|m( j)|! +

2 (2n�r)m( j )

(n�r)m( j )
\2 |m( j ) | : j=0, 1, ...= (3.13)
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forms a non-increasing sequence. For any nonnegative integer +, set

M+={
Nl , +=0,

(3.14)
Nl+ :

+&1

j=0

dm( j ) , +�1,

where Nl is given by (2.7).

3.2. Theorem. Under the above assumptions, d M+(A2, l (D), C(7\)) and
$M+

(A2, l (D), C(7\)), the Gelfand and linear N-widths of A2, l (D) in C(7\),
both are equal to

\ :
�

j=+ \
( |m( j)|&l )!

|m( j)|! +
2 (2n�r)m( j )

(n�r)m( j )
dm( j ) \2 |m( j ) |+

1�2

,

where +�0.

Proof. By [2, Proposition XI.4.1; 2, Corollary XI.4.2],

&.m
j &2

A2(D)=
(n�r)m

(2n�r)m
&.m

j &2
7 .

Therefore the set of functions

{( |m|&l )!
|m|! \(2n�r)m

(n�r)m +
1�2

.m
j : j=1, ..., dm , |m|�l=

forms an orthonormal basis for A l
2(D) and an orthogonal system in

L2(7\). Moreover, by (3.4)

"( |m|&l )!
|m|! \(2n�r)m

(n�r)m +
1�2

.m
j "

2

L2(7\)

=\( |m|&l )!
|m|! +

2 (2n�r)m

(n�r)m

\2 |m|.

(3.15)

Notice that the numbers on the right-hand side of (3.15) are the same as
those in (3.13). Thus, when the partitions m are reenumerated as the
sequence [m( j): j=0, 1, ...] as above, then the monotonicity condition (3.6)
holds, and then the remainder of the proof of Theorem 3.2 is now
completely to the proof of Theorem 3.1.

3.3. Remarks. (1) Let H�, l (D) denote the Bergman�Sobolev space of
holomorphic functions f on D for which Rlf # B(H�(D)). The referee has

132 DING, GROSS, AND RICHARDS



pointed out that, for +�l+1, the same method of calculation can be used
to obtain the exact values of the Bernstein width

bN+&1(H�, l (D), L2(7\))=\ 1
(n&1)!

:
+&1

k=l

k!(n+k&1)!
((k&l )!)2 \&2k+

&1�2

,

where N+ is given by (2.7). We also refer to [7] for the case of the unit ball
in Cn.

(2) As in Theorem 3.2, we may reenumerate partitions m satisfying
|m|�l as [m( j): j=0, 1, ...] in such a way that

{\( |m( j)|&l )!
|m( j)|! +

2 (n�r)m( j )

(2n�r)m( j )
\2 |m( j )| : j=0, 1, ...= (3.16)

forms a non-increasing sequence. Note that (3.16) is different from (3.13)
so that this reenumeration is different from the reenumeration in
Theorem 3.2. By defining M+ as in (3.14) we obtain, for +>0,

bM+&1(H�, l (D), L2(D\))

=\ :
+&1

j=0
\ |m ( j)|!

( |m( j)|&l )!+
2

dm( j )
(2n�r)m( j )

(n�r)m( j )
\&2 |m( j )|+

&1�2

.

4. PRELIMINARIES ON SOBOLEV SPACES

For p�1, the Hardy space Hp(D) is the class of functions f: D � C such
that

& f & p
Hp(D)= sup

0<:<1
|

7
| f (:z)| p d_(z)<�.

Let Hp, l (D) denote the Hardy�Sobolev space of all holomorphic functions
f on D for which Rlf # B(Hp(D)). Similarly, let Ap, l (D) denote the
Bergman�Sobolev space of all holomorphic functions f on D for which
Rlf # B(Ap(D)) where Ap(D) is the class of all functions f : D � C such that,

& f & p
Ap(D)=|

D
| f (z)| p d&(z)<�.

Recall from Section 2 that for each partition m the set of functions
[.m

1 , ..., .m
d m

] is a basis for Pm(V C), orthonormal with respect to the norm
on L2(7). Reenumerate the set [.m

j : m any partition and 1� j�dm] as
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[.(i) : i=0, 1, 2, ...] in such a way that deg(.(i))�deg(.(i+1)) for all
i=0, 1, 2, ... . For a given positive integer N, let

N$=min[i : deg(.(i))=deg(.(N ))]

and

N� =deg(.(N )).

Note that N$�N and deg(.(N$&1))=N� &1. Also, it follows from (2.5) and
(2.6) that if Nk�N<Nk+1 then N� =k and N$=Nk .

We set

P(N )=Span[.(i) : deg(.(i))�N],
(4.1)

6 (N )=Span[.(i) : i=0, 1, ..., N],

and

?(N )=Span[.(i) : i=0, 1, ..., N$&1].

From these definitions we have ?(N )=6 (N$&1), 6 (N )�P(N� ), and P(k)=
6 (Nk+1&1).

Let

X N
p (D)=[ f # Hp(D) : Fk=0, k=0, 1, ..., N� &1], (4.2)

and

Y N
p (D)=[ f # Ap(D) : Fk=0, k=0, 1, ..., N� &1], (4.3)

where Fk is the kth term in the homogeneous decomposition (2.10) of f.
For integers N and l with 0�l<N, set

:N, l=
(N&l )!

N!
.

For any holomorphic function f # Hp(D) and 0<\�1, define

(PN f )(z)= :
N� &1

k=0

(1&\2(N� &k)) Fk(z), (4.4)

and for l�1 define

(P l
N f )(z)= :

l&1

k=0

Fk(z)+ :
N� &1

k=l \1&
:2N� &k, l

:k, l
\2(N� &k)+ Fk(z). (4.5)

When l=0, set P0
N=PN .
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5. UPPER BOUNDS FOR LINEAR N-WIDTHS

5.1. Lemma. Let 1� p��, 0<\�1, and 0<l<N� .

(a) If f # Hp, l (D) then

& f&P l
N f &Lp(7\)�:N� , l \N� . (5.1)

(b) If f # Ap, l (D) then

& f&P l
N f &Lp(D\)�:N� , l \N� +2np&1

. (5.2)

Proof. For 0<\�1 and all real numbers t, let

Kl, N(\, t)=:N� , l+2 :
�

k=N� +1

\k&N� :k, l cos(k&N� ) t. (5.3)

it is well known (cf. Pinkus [8, p. 251]) that

Kl, N(\, t)�0 (5.4)

for all 0<\�1 and all real numbers t.
Let f be holomorphic in D, 0<s<1, ` # V C, with |`|=1, and fs be

defined by fs(z)= f (sz), z # D. Then

fs(z)&(P l
N fs)(z)

=
*l

2? |
?

&?
\N� &l exp(i(l&N� )(%&,)) Kl, N(\, %&,) f (l )

s` (ei%) d%, (5.5)

where z=*`, *=\ei,, 0<\�1, fs`(*)=fs(*`), and f (l )
s` is the l th derivative

in * of fs` . By (2.11) we have

Rlfs(*`)=*lf (l )
s` (*). (5.6)

It follows from (5.5) and (5.6) that

|
7

| fs(*`)&(P l
N fs)(*`)| p d_(`)

�\N� p |
7 \

1
2? |

?

&?
Kl, N(\, %&,) |Rlfs(e i%`)| d%+

p

d_(`).

By (5.3) and (5.4),

&Kl, N(\, } )&L1(&?, ?)=:N� , l .
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By a well-known property of convolution,

& fs(* } )&(P l
N fs)(* } )&Lp(7)�:N� , l\N� &Rlfs &Lp(7) . (5.7)

Applying the technique utilized in the proof of Theorem 2 of Graham
[5], we deduce that if f # Hp, l (D) then f # Hp(D). By the Lebesgue
dominated convergence theorem [9, Theorem 5.6.6],

lim
s � 1&

& f (* } )& fs(* } )&Lp(7)=0. (5.8)

By (4.4) and (4.5), P l
N f is a polynomial; therefore

lim
s � 1&

&P l
N fs(* } )&P l

N f (* } )&Lp(7)=0. (5.9)

If f # Hp, l (D) then &Rlf &Lp(7)�1. Letting ,=0 in (5.7) and s � 1&, we
see that (5.1) follows from (5.8) and (5.9) for 1� p<�. In the case in
which p=�, (5.1) follows directly from (5.5) and (5.6).

We turn now to the proof of (5.2). Thus, if f # Ap, l (D) then
&Rlf &Lp(D)�1. By (5.5), (5.6), and the argument, as above,

1
2? |

?

&?
| fs(*`)&(P l

N fs)(*')| p d,�: p
N� , l\

N� p 1
2? |

?

&?
|Rlfs(ei%`)| p d%.

(5.10)

Integrating both sides of (5.10) over D(0<s<1, |`|=1) and changing
variables ` [ z�\, we have

\&2n & f &P l
N f & p

Lp(D\)�: p
N� , l\

N� p &Rlf & p
Lp(D)�: p

N� , l\
N� p.

Then (5.2) holds for 1� p<�. Similarly, (5.2) holds also for p=�.

5.2. Proposition. Suppose 1� p��, 0<\�1, and 0<l<N� . Then

$N(Hp, l (D); L p(7\))�:N� , l\N�

and

$N(Ap, l (D); L p(D\))�:N� , l\N� +2np&1
.

Proof. The proposition follows directly from Lemma 5.1.
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6. LOWER BOUNDS FOR BERNSTEIN N-WIDTHS

6.1. Lemma. Let 0< p��, 0<\�1, and N�0. If PN # P(N ) then

&PN(\ } )&Lp(7)�\N &PN&Lp(7) (6.1)

and

&PN&Lp(D\)�\N+2np&1 &PN&Lp(D) . (6.2)

Proof. By Pinkus [8, p. 252], the inequality (6.1) is valid if V is
one-dimensional. Hence

1
2? |

?

&?
|PN(\ei%`)| p d%�

\Np

2? |
?

&?
|PN(e i%`)| p d% (6.3)

for all ` # V C, |`|=1. Integrating both sides of (6.3) over 7, we have

|
7

|PN(\`)| p d_(`)=|
7

1
2? |

?

&?
|PN(\ei%`)| p d% d_(`)

�\Np |
7

1
2? |

?

&?
|PN(e i%`)| p d% d_(`)

=\Np |
7

|PN(`)| p d_(`).

Hence (6.1) holds for 0< p<�, and the case in which p=� can be
proved similarly.

Integrating ` over D on both sides of (6.3), we have

&PN(\ } )&Lp(D)�\N &PN&Lp(D) .

Changing variables, we have

&PN&Lp(D\)=\2np&1 &PN(\ } )&Lp(D)=\N+2np&1 &PN&Lp(D) .

Thus, (6.2) holds for 0< p<�. The case in which p=� is established by
a similar, but less complicated, argument.

6.2. Lemma. Let PN # P (N ), 1� p��, and 0�l<N. Then

&RlPN&Hp(D)�:&1
N, l &PN&Hp(D) (6.4)
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and

&RlPN&Ap(D)�:&1
N, l &PN&Ap(D) (6.5)

Proof. By Pinkus [8, p. 252], if QN # P(N )(C1) (where P(N )(C1) is
defined as in (4.1) but with V of dimension 1), then we have

1
2? |

?

&?
|Q$N(ei%)| p d%�N p 1

2? |
?

&?
|QN(ei%)| p d% (6.6)

and

&Q$N&C(T )�N &QN&C(T ) , (6.7)

where & }&C(T ) is the supremum norm on the circle [` # C : |`|=1]. By (6.6)
and (5.6), we have

1
2? |

?

&?
|RlPN(ei%`)| p d%�

:&p
N, l

2? |
?

&?
|PN(e i%`)| p d%. (6.8)

Integrating both sides of (6.8) over 7, we obtain

&RlPN&Lp(7)�:&1
N, l &PN&Lp(7)

from which (6.4) follows by (3.1). Integrating ` over D on both sides of
(6.8), we obtain (6.5). Finally, the case in which p=� follows from (6.7).

6.3. Proposition. If 1� p��, 0<\�1, and 0�l<N� , then

bN(Hp, l (D); L p(7\))�:N� , l\N� (6.9)

and

bN(Ap, l (D); L p(D\))�:N� , l\N� +2np&1
. (6.10)

Proof. If PN # 6 (N ) then PN # P(N� ). In addition, if &PN&Lp(7\)�:N� , l\N� ,
then (6.1) implies &PN&Lp(7)�:N� , l , and (6.4) implies &R lPN&Hp(D)�1 and
PN # Hp, l (D). Since 6 (N ) is an (N+1)-dimensional subspace of L p(7\)
then (6.9) holds.

Similarly, if PN # 6 (N ) and &PN&Lp(D\)�:N� , l \N� +2np&1
then (6.2) implies

&PN&Lp(D)�:N� , l , and (6.5) implies &RlPN &Ap(D)�1 and PN # Ap, l (DR). It
follows that, (6.10) holds.
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7. THE MAIN RESULT

7.1. Theorem. Let 1� p��, 0<\�1, and 0<l<N� . Then

dN(Hp, l (D); L p(7\))=:N� , l\N� , (7.1)

dN(Ap, l (D); L p(D\))=:N� , l\N� +2np&1
, (7.2)

and the same equalities hold for the N-widths d N, $N and bN . Furthermore,

(i) ?(N ) is an optimal subspace for dN(Hp, l (D); L p(7\)) and
dN(Ap, l (D); L p(D\));

(ii) X N
p (D) is an optimal subspace for d N(Hp, l (D); L p(7\)), while

YN
p (D) is an optimal subspace for d N(Ap, l (D); L p(D\));

(iii) P l
N is an optimal operator for $N(Hp, l (D); L p(7\)) and

$N(Ap, l (D); L p(D\));

(iv) 6 (N ) is an optimal subspace for bN(Hp, l (D); L p(7\)) and
bN(Ap, l (D); L p(D\)).

Proof. By Pinkus [8, Chap. II], bN�dN�$N and bN�d N�$N . Thus,
(7.1), (7.2) and the other equalities follow from Propositions 5.2 and 6.3;
also, parts (iii) and (iv) follow from the proof is of these propositions.

Next, part (i) follows from the fact that P l
N f # ?(N ). By (4.2) and (4.5),

if f # X N
p (D) then P l

N f =0. Therefore,

sup[& f &Lp(7\) : f # X N
p (D) & Hp, l (D)]

=sup[& f &P l
N f &Lp(7\) : f # X N

p (D) & Hp, l (D)]

�:N� , l\N� ,

proving that X N
p (D) is an optimal subspace for d N(Hp, l (D); L p(7\)). The

proof that Y N
p (D) in (4.3) is an optimal subspace for d N(Ap, l (D); L p(D\))

is similar, and this completes the proof of (ii).

7.2. Remarks. (1) In Theorem 7.1, L p(D\) can be replaced by the
space of all holomorphic functions with the L p-norm. This follows by an
argument similar to the discussion given by Pinkus [8, pp. 253�254, and
remark, p. 256].

(2) The referee has kindly pointed out that Theorem 7.1 admits a
convenient form of generalization to certain classes of functions (e.g., the
Hardy�Sobolev and Bergman�Sobolev classes for p=2) in the case of a
Hilbert space. The one-dimensional case was described in [4].
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To explain the generalization to the present context, let H consist of all
holomorphic functions f on D with

f (z)= :
m�0

:
dm

j=1

cj, m .m
j (z)

such that

& f &2
H= :

m�0

#m :
dm

j=1

|cj, m |2<�, (7.3)

where [#m : m�0] is a sequence of non-negative real numbers satisfying

lim inf
|m| � �

#1�|m|
m �1.

Generally, H is a semi-Hilbert space [4, p. 132]. Let B(H) be the unit ball
of H in the semi-norm (7.3). In particular, if #m=0 for |m|�l&1 and
#m=(|m|!�( |m|&l )!)2 for |m|�l, then B(H) is the space H2, l (D). Also if
#m=0 for |m|�l&1 and

#m=\ |m|!
( |m|&l )!+

2 (n�r)m

(2n�r)m

for |m|�l, then B(H) is the space A2, l (D). For B(H)=H2, l (D) we take
X=L2(7\), and for B(H)=A2, l (D) we take X=L2(D\). Then the condi-
tions of [4, Theorem 1] are satisfied for l<N� . By that result, there exists
a self-adjoint, positive semi-definite, operator T1 on L2(7\) (cf. [4, p. 35]),
with eigenvalues *0�*1�*2� } } } >0, such that the Gelfand N-width of
H2, l (D) in L2(7\) is exactly *1�2

N&Nl
. A direct calculation shows that,

*1�2
N&Nl

=:N� , l\N� , which establishes (7.1) for the Gelfand N-width of H2, l (D)
in L2(7\). Further, a similar discussion also applies to (7.2).
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